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Background

Point cloud video streaming remains challenging due to its high 
bandwidth and computational demands. As part of an interdisciplinary 
project at NYU Tandon focused on advancing dance education through 
volumetric video, we explore efficient representation, training, and 
rendering techniques for dynamic 3D content. Our work aims to 
reconstruct high-quality, streamable 3D scenes efficiently. This research 
contributes to enabling real-time point cloud streaming for applications in 
the performing arts, education, and beyond.

3D Gaussian Splatting has gained popularity for its ability to deliver fast 
and high-quality reconstruction and rendering of complex 3D scenes. 

Position(mean): (x,y,z)
Scale: (sx,sy,sz)
Rotation: r (quaternion)

Color: (r,g,b)
Opacity: 𝛼 
Rendering: projection with alpha blending

Training a separate 3DGS for each frame is time-consuming. Inspired by 
4D Gaussian Splatting we propose a more efficient solution by modeling 
temporal dynamics directly.

Camera Calibration: Checkerboard images are used to estimate camera 
intrinsics and extrinsics.

Background Segmentation: We use Grounded SAM2, a promptable 
model, to segment dancers from complex backgrounds. It reliably 
captures fine details such as hair and clothing with text prompts.

Masked Images(RGBA): The segmentation masks are also stored in the 
alpha channel of PNG images to create RGBA inputs.

Visual Hull and Point Cloud: Multiview masks are used to generate a 
visual hull, from which we construct the point cloud.

Recenter and Rescale: Since our camera principal points are not at the 
center of images, we recenter them by shifting the images, which is stable 
for pinhole cameras. Shifting can cause unwanted stripe cut on dancers, 
so we use a stable method to rescale the images without losing any 
information.

Sequence Partitioning: Each sequence is divided into smaller sub-sequences (30 frames) to 
enable more efficient training and achieve more stable, higher-quality scene reconstruction.

3DGS Initialization: The first frame is used to train a static 3D Gaussian Splatting (3DGS) model, 
which serves as the canonical base for subsequent frames.
Spatial-Temporal Information Encoding: Position and time are encoded to capture motion and 
deformation over time. Color and  Opacity remain unchanged.

MLP Learning: A lightweight multilayer perceptron (MLP) learns to map encoded features to 
Gaussian deformation parameters.

Deformation Decoding: The network decodes predicted offsets in position, rotation, and scale to 
dynamically update the Gaussian parameters across frames..
3DGS Extraction and post-processing: Per-frame 3DGS instances are extracted and optionally 
refined using filtering or pruning techniques to ensure visual quality and memory efficiency..
Streaming 3D video: The combined set of extracted 3DGS frames can be streamed or rendered 
in real time and interactable in common tools such as SuperSplat.
Mesh Extraction:  Meshes are extracted from 3DGS using Poisson Reconstruction or Marching 
Cubes algorithms.

Reconstruction Quality: We use PSNR (Peak Signal-to-Noise Ratio) to 
quantitatively evaluate the fidelity of our rendered images against ground 
truth. Higher PSNR indicates better reconstruction accuracy.

Training Time: We assess training efficiency by measuring the average 
time required to train one frame.

Storage Efficiency: Model compactness is evaluated by the average 
size of the 3DGS representation per sequence. Lower storage footprint 
enables faster transmission and supports streaming applications.

Visual Comparison: We visually inspect the reconstructed 3D video to 
identify floaters, holes, and artifacts, providing qualitative assessment of 
geometric consistency and temporal stability.

Conclusion: Our evaluation demonstrates that 4DGS with 30-frame 
sub-sequences and post-processing achieves the best overall 
performance in terms of reconstruction quality (highest PSNR), training 
efficiency, and model compactness.
Future Work: 
● Incorporate depth maps to generate higher-quality point clouds
● Explore advanced compression techniques
● Enhance mesh extraction methods to produce cleaner, more complete 

3D geometry.
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